
One-way indexing for plausible deniability in censorship resistant storage

Eugene Y. Vasserman
Kansas State University∗

Victor Heorhiadi
University of North Carolina at Chapel Hill∗

Nicholas Hopper
University of Minnesota

Yongdae Kim
University of Minnesota

Abstract
The fundamental requirement for censorship resis-

tance is content discoverability — it should be easy for
users to find and access documents, but not to discover
what they store locally, to preserve plausible deniabil-
ity. We describe a design for “one-way indexing” to
provide plausibly-deniable content search and storage
in a censorship resistant network without requiring out-
of-band communication, making a file store searchable
and yet self-contained. Our design supports publisher-
independent replication, content-oblivious replica main-
tenance, and automated garbage collection.

1 Introduction
Censorship resistant systems allow users to find and ac-
cess content even if an external entity is trying to pre-
vent this, either by attempting to block specific content
(e.g. by keyword), classes of content (e.g. video files),
classes of websites and services (e.g. social networks),
or block the use of the communication system itself (e.g.
shutting down the Internet). Prior real-world experience
demonstrates that nation-state-level adversaries are will-
ing to engage in all these tactics [5, 18, 31]. Numerous
potential solutions have been proposed [4, 7, 27], but the
problem of plausibly-deniable search and robust storage
remains elusive due to its seemingly contradictory set of
requirements — how does a system maintain a search-
able index of content for users and yet hide it from inter-
mediate/relay nodes and volunteers who store content?

Any useful censorship resistant system must provide
plausibly-deniable in-band search and content privacy on
the wire. Protection for storers as well as intermediaries
is vital, since we expect that any user’s computer may
be seized and examined by a powerful adversary [22], so
the owner must be able to plausibly disavow knowledge
of stored content. That same user must be able to search
and find content in the network which may already be
on his or her computer, but should not discover that it

∗Part of this work was performed at the University of Minnesota.

is stored locally. Prior work has partially addressed this
by encrypting files and requiring out-of-band discovery
of decryption keys, which makes reconstruction of con-
tent difficult. We describe a design for plausibly deniable
search and robust storage for a censorship resistant net-
work that supports natural keyword search while retain-
ing deniability.1 Our design is self-contained — no out-
of-band communication is required to find content nor
obtain decryption keys to decode files. This promotes
usability and reduces users’ real-world risks.
One-way indexing. To solve the problem we propose
“one-way indexing,” such that a user can search by key-
word, but someone storing parts of the file cannot de-
termine the content of the file or query. To publish file
F with keyword kw, Alice partitions it into three logical
portions — the content, consisting of encrypted blocks
b1, . . . ,bk each indexed under ID hash1(bi); the content
manifest, containing a list of all block hashes (allowing
retrieval of the file) and indexed as hash2(kw); and the
key manifest, containing the file decryption key, indexed
as hash3(kw). To retrieve a file, a user will search for
hash2(kw) and hash3(kw), but any node not storing both
manifests must invert the keyword hash in order to re-
trieve the other manifest and reconstruct the file, even if
all file blocks are stored locally.
Robust storage. Censorship resistance requires perpet-
ual and robust storage. We use both erasure coding
and replication at publication time to achieve initial ro-
bustness, and maintain it without publisher intervention.
Once the file has been stored as described above, nodes
who store the file’s content manifest lazily verify that
a file is sufficiently replicated, freeing the original pub-
lisher from responsibility and providing added deniabil-
ity. To prevent mitigate adversaries overwhelming the
system with useless data, we incorporate lazy garbage
collection, randomly selecting unused contents for dele-

1Legal precedent regarding the value of plausible deniability for
users is beyond the scope of this work.

tion. We also allow content curating — editors2 can
“bless” important but unpopular files by signing their
manifests, exempting them from deletion. The manifest
holder periodically retrieves the file, so its blocks will
avoid garbage collection.

We examine the requirements for censorship resistant
and plausably deniable search in Section 2 and describe
how our design addresses them in Section 3. Section 4
details both a theoretical and practical evaluation of our
system security, performance, and survivability using a
modified Azureus/Vuze DHT client [2] in a dynamic net-
work environment (high node churn and frequent tran-
sient network faults). Finally, we discuss related work in
Section 5 and conclude in Section 6.

2 Requirements
The set of challenges for censorship resistant search is
distinct from other storage architectures, which usually
implement access control and data confidentiality — the
antithesis of censorship resistance goals. Censorship
resistant systems should maintain plausible deniability
for storers while preserving availability of all content
for all users with overwhelming probability even when
an adversary can remove or compromise an large con-
stant fraction of the network [11]. In-band key manage-
ment3 is therefore difficult: nodes should be able to deny
knowledge of local file content even while all other users
can reconstruct and decrypt all files in the network.

The network consists of a large number of dynamic
malicious adversaries, along with honest-but-curious
storers, who volunteer storage space and route messages.
We assume adversaries with the resources of nation-
states who control the network infrastructure, compro-
mise targeted nodes, and block usage of censorship resis-
tant systems (but preserve Internet connectivity in gen-
eral). Storers may also take the role of publisher to up-
load content, or searcher to find and download content.
Discoverability. To make the system easy to use, content
should be easy to find, such as through keyword search.
Deniability. Users who have their communication mon-
itored or computer confiscated and examined must be
protected. Node-local data should not allow storers to
infer the nature of the content they store or queries to
which they respond, either in real-time or post-hoc, be-
yond the fact that queries may match a local file. Mak-
ing recovery of individual queries or local files difficult
but not impossible is sufficient for plausible deniability
as long as bulk recovery is even more resource-intensive.
Protecting identities of system users is also crucial, so
while censorship resistance requires protocol obfusca-
tion [16, 17] and identity concealment [13, 15, 23, 26],

2Editor selection is outside the scope of this paper.
3The network stores everything required to retrieve content

they are beyond the scope of our design — we are agnos-
tic to how they are implemented and incorporated.
Robustness. Storage is provided by network nodes, each
contributing a portion of the overall network storage ca-
pacity in a peer-to-peer (P2P) manner. Content is repli-
cated to ensure availability with high probability even
with high storer churn and attempted blocking.

3 System Design
To achieve self-contained plausibly deniable storage, we
separate file content, metadata, and encryption keys,
making this information only known to the publisher and
a searcher, but not storers or arbitrary network nodes.
For search we use distributed hash tables (DHTs), which
are structured overlay networks that allow for efficient
lookup and publication of key-value pairs [21, 24]. Each
node has a logical DHT identifier; to distinguish DHT
keys from cryptographic keys, for the remainder of this
paper we will refer to DHT keys as DHT IDs.

We are agnostic to lower-level blocking-resistant pro-
tocols (e.g. membership concealment [15, 26] or dark-
nets [13, 23]) that protect against network-layer attacks.

3.1 Publishing
Figure 1 shows the publication process. To publish file
F , a publisher generates an ephemeral4 asymmetric key
pair PK/SK and symmetric key K, then encrypts the
file F using a symmetric cipher keyed with K to pro-
duce EK(F), and partitions the resulting ciphertext into
x blocks.5 To improve availability, each block is m-of-n
erasure coded [20] to yield a total of xn encoded chunks
(ECn

m(EK(F))). The parameters of the erasure code de-
termine the storage overhead — an m-of-n code imposes
a factor of n increase on the amount of data stored in the
system. Selection of m and n values which are “good
enough” to store data indefinitely is discussed in Sec-
tion 4. Each encoded chunk is then be inserted into the
DHT, using the hash of the chunk content as storage
location ID. The chunks are therefore self-verifying —
the hash of the received chunk must match the requested
hash and the hash in manifest [19].
Manifests. Each data file has two associated manifests,
or pieces of metadata required to locate and identify con-
tent: the key manifest contains the decryption key K,
and the content manifest lists the network locations of
erasure-coded file chunks. The publisher compiles a list
of k keywords that describe the file contents, and in-
cludes the list of keyword hashes in the manifests, salted
to slow down brute-force dictionary attacks. Salts can
be arbitrarily long and each instance of a manifest for

4These can be kept and used as long-term pseudonyms at the cost
of publisher deniability.

5Once everything is uploaded, the publisher can discard all keys —
since they become public, there is no benefit in keeping them.

2

Figure 1: A publisher encrypts a file and then applies an
m-of-n erasure coding scheme.

the same file can use different salts. For indexing, one
keyword per manifest must remain unsalted, otherwise
clients must guess salt values in order to find files. Each
manifest includes only one unsalted keyword selected
from list k, and all salts are random, so each manifest
is unique. Although it is sufficient to brute-force only
the indexing keyword to partially compromise plausible
deniability, honest nodes have no incentive to do so un-
less compelled,6 and adversaries gain nothing, since they
can directly search for any keywords of interest. Content
manifests have the following format:
• s1,hash2(s1,kw1), · · · ,sk,hash2(sk,kwk), a list of

hashed salted keywords
• hash2(kwi), a single unsalted hashed keyword from

the list above, for indexing
• C1,C2, · · · ,Cn, a list of chunk storage locations

(content hashes) in the DHT
• hash1(EK(F)), a hash of the file ciphertext before

erasure coding, to verify reconstruction
• h(F), a hash of the file plaintext before encryption

and erasure coding, to verify decryption
• PK, the publisher’s ephemeral public key
• SigSK(M), the publisher’s ephemeral signature

over the manifest, to preserve integrity
Key manifests are identical except that they hold a plain-
text copy of key K instead of the chunk storage locations,
and keywords are hashed using hash3 instead of hash2.

In order to block a file it is sufficient to deny access
to all copies of either its key manifest or content mani-
fest, so a particularly aggressive replication is needed to
ensure availability. Manifests are not erasure-coded, but
heavily replicated: each manifest is indexed by an un-
salted keyword as well as a replica number, so a manifest
with k keywords and replication factor r is stored under
rk DHT IDs h(i,h(keyword j)) for 0 ≤ i < r, 0 ≤ j < k.

3.2 Search and retrieval
To retrieve a file, a searcher first obtains the file mani-
fest by hashing meaningful search terms and fetching the

6Even if participants are forced to carry out dictionary attacks
against their stored content, they can drop content with banned key-
words without compromising content discovery, as humans easily
avoid such keyword-based attacks in practice [9, 30].

corresponding values from the DHT. Search terms are
hashed using a cryptographically-secure one-way hash
function, so everyone forwarding the request and storing
the results has plausible deniability as to the search tar-
get. Each query will return a number of manifests, and
the searcher must determine which of them most closely
matches the query keywords.7 The searcher repeats the
process for key manifests, but can stop after retrieving
the first instance of a key manifest matching the file man-
ifest (they will have identical h(EK(F))). In parallel with
key manifest retrieval, the searching node fetches any m-
chunk subset of the n content chunks listed in the file
manifest to reconstruct the encrypted file. Reconstruc-
tion is successful if the results match h(EK(F)). De-
crypting using key K from the key manifest and verifying
that the plaintext matches h(F) completes the process.

3.3 Storage, maintenance, and cleanup
Content-oblivious replication. To ensure continuous
availability even in cases of large-scale blocking or fail-
ure, manifest storers continuously monitor the replica-
tion factor of manifests, and are referred to as manifest
“guarantors.” Key manifest holders do not know the lo-
cations of content chunks and cannot reconstruct the file,
but content manifest holders can, and also maintain the
replication factor of all file chunks listed in the mani-
fest. Note that this requires no action on the part of the
publisher. Content manifest guarantors can reassemble
entire erasure-coded encrypted file, but cannot:

• Recover file plaintext
• Recover file keywords except by brute force
• Alter the manifest without breaking the signature

scheme used to sign it
• Remove chunks or manifests from the network

Every time period τ , guarantors examine their stored
content manifests and search for a sample of those
chunks to can probabilistically determine the current
replication factor of a file and compare it to the desired
replication factor. If the difference is significant, the
node can download and reconstruct the encrypted file,
apply the erasure code (obtaining copies of all chunks),
and inserts missing chunks back into the DHT. Both con-
tent and key manifest storers do the same with the man-
ifests themselves, checking to see if enough replicas are
available, and creating new replicas if necessary. To pre-
vent selective response to only refresh queries (to make
the replication factor appear high), these probes must be
indistinguishable from “real” file access.
Garbage collection. Every storer associates a timestamp
of the original storage time with every locally stored

7Alternatively, to minimize query time and bandwidth require-
ments, clients can first search for the least common keyword under
which content of interest might be indexed, download those manifests,
and then check additional salted keyword hashes locally.

3

chunk and manifest, and updates the timestamp every
time that chunk is accessed by another network user.
During idle times, nodes clear storage space by lazily ex-
amining their local content and probabilistically discard-
ing anything with timestamps older than a global cutoff
(e.g. one month). Manifest guarantors implicitly serve
to refresh timestamps by accessing content to check the
replication factor. Likewise, manifests that are not be-
ing actively accessed or are over-replicated can be prob-
abilistically discarded by their guarantors. As manifests
are dropped, file chunks to which they refer become “or-
phaned,” and will be garbage-collected. Thus two honest
manifest holders, one for content and one for the key, are
sufficient to maintain replication of any piece of content
with overwhelming probability, as long as the minimum
number of chunks required to reconstruct the encrypted
file can still be retrieved. This will not protect against
junk data, but will increase adversarial workload.
Curated content. Our system is similar in concept to
a massively distributed version of WikiLeaks [29], and
in keeping with its spirit, we preserve unpopular but
important files by employing an editor-facilitated pub-
lishing model. This hybrid model supports storage for
data which has not received editor approval (whether for
lack of examination or explicitly unapproved), but editor-
approved data has special protection. We bootstrap the
network with a set of hard-coded editor public keys, the
private counterparts to which are held by a select group
of pseudo-administrators who sign manifests8 to add a
“stamp of approval,” excluding them from garbage col-
lection by honest nodes. Since manifest holders refresh
content in the network, chunk storers need never know
whether they store editor-approved content or not.

Of course, editors introduce their own set of problems:
malicious editors may sign “junk,” but we must err on
the side of content retention if we want to support stor-
age in perpetuity, and a single honest editor is sufficient
to ensure that important content is retained. Therefore
we are not particularly concerned with malicious edi-
tors, since they cannot explicitly remove content from the
system. While a free-for-all model where all published
content is maintained indefinitely is attractive, it suffers
from a number of drawbacks such as unregulated content
quality, pollution and collision attacks, and storage space
concerns, discussed further in Section 4.

4 Evaluation
Plausible deniability. We provide plausible deniability
through separation of encrypted content from metadata
and decryption key. The separation is one-way, i.e. ac-
cess to one or more of the components does not yield
the plaintext or keywords. Nodes who store individual

8Both the content and key manifests must be signed.

chunks have no information regarding the plaintext,9 and
nodes who store content manifests can access the list of
chunk locations in the network and a list of salted key-
word hashes, but not the content plaintext. These nodes
can reconstruct encrypted files, but cannot decrypt with-
out a brute-force search of the decryption keyspace, or
a brute-force search for at least one original keyword to
fetch the key manifest. Finally, a node storing the key
manifest does not have access to the content, the content
locations, nor to the keywords. It would likewise need
to invert keyword hashes through brute force to find the
content manifest to download and reconstruct the file.

There is no advantage in storing chunks in conjunction
with a manifest, but a peer storing both the key and con-
tent manifests can fetch, reconstruct, and decrypt the file.
However, this does not benefit honest-but-curious stor-
ers, who would sacrifice their own plausible deniabil-
ity by not following the protocol and storing both. Hon-
est nodes should refuse a manifest store request, without
examining manifests’ content, if they already have the
other manifest (h(EK(F)) will be the same in both). Ad-
versaries do not benefit from storing both manifests ei-
ther, since the same goal can be accomplished by directly
searching for keywords they wish to censor. Nonethe-
less, we minimize the risk of asking the same node to
store both manifests by using different hash functions
for each manifest type: hash1 for chunk ID generation,
hash2 for content manifests, and hash3 for key manifests.
Robust storage. As in [12], we express the durability D
of a file block when using m-of-n erasure coding as

D = P(s ≥ m) =
n

∑
k=m

(
n
k

)
(1− fmax)

k · f n−k
max .

Recall that every file block is erasure-coded to produce
n chunks, such that at least m chunks are required to
successfully decode each block; here, s is the number
of successfully-retrieved chunks, and fmax is the failure
probability of a node, assuming uniformly random fail-
ures and that all chunks are stored at different nodes.
Therefore, if x blocks are stored in the network, then the
probability that every file is recoverable is ρ(x) = Dx. If
1−ρ(x) is negligible then we say that a system is robust.

Figure 2 shows results of simulations to determine file
robustness with erasure code parameters uniformly sam-
pled from [1,5] and [5,500]. Storage overhead of nearly
a factor of 10 is needed for a robust censorship resistant
system to support 260 variable-size chunks, with a 50-
of-500 code as the best trade-off between overhead and
robustness. The resulting network can tolerate more than
70% node failure before losing data.
System availability. Protection from outright block-
ing at IP and protocol levels should be provided by

9Timing attacks may be used to identify correlated chunks, but not
the nature of the content.

4

Figure 2: Inverse storage robustness (1−ρ) using vari-
ous erasure code configurations or replication.

lower-level mechanisms, such as identity concealment
and darknets [13, 15, 23, 26], and we focus instead on
plausible deniability and robustness. DHTs overlays are
particularly vulnerable to certain classes of attack:
• Storage exhaustion: publishing as much as possi-

ble in order to exhaust all available network storage;
• Pollution: publishing irrelevant content indexed

with keywords that adversaries wish to block; and
• Keyword “squatting”: attempting to acquire DHT

identifiers that place adversaries in logical network
locations such that they control specific keywords,
and block searches for them.

Any open-access P2P network is necessarily vulnerable
to pollution and storage exhaustion. Keyword squatting
is a problem if adversaries can influence the choice of
their own DHT IDs and content is only replicated at lo-
cations logically close to the hash of the data, allowing
attackers to block access to targeted content by denying
access to a small subset of the network (a “neighbor-
hood”). Inter-neighborhood replication and load balanc-
ing mitigates squatting attacks, so in addition to erasure
coding we replicate each chunk and each manifest: for a
given replication factor r, chunk c is stored under r DHT
IDs h(r,h(c)) and a manifest with keyword kw is stored
under h(r,h(kw)) for 0 ≤ i < r. Assuming a uniform dis-
tribution of the resulting hash values, replicas should not
exhibit neighborhood locality. Erasure coding and repli-
cation yields better results than either strategy alone [12].

A number of storage schemes deal with pollution and
exhaustion by either requiring content to be refreshed pe-
riodically or by purging unpopular files [7, 8]. How-
ever, popularity-only maintenance is vulnerable to at-
tack [14] and does not protect potentially important but
infrequently accessed data, and periodic refresh places
undue burden on the original publisher and greatly re-
duces deniability of the data source. In fact, requiring
refresh benefits the censor since publishers now have the
power to implicitly remove files from the network and
can be compelled to do so. We use a hybrid scheme,
composed of periodic refresh, popularity-based garbage

collection, and curated content vetted by human editors.
An additional twist to our refresh strategy is that net-
work nodes other than the publisher perform refresh in
a content-oblivious way, i.e. nodes are not aware of the
nature of the content they are refreshing. Unrefreshed
data is garbage-collected, so popular data is retained and
unpopular non-vetted data is subject to deletion. This de-
creases, but does not completely eliminate, damage from
pollution and exhaustion attacks by requiring adversaries
to continually refresh their content in the network by ac-
cessing it or uploading it again. Human intervention will
be required in any system, since we cannot algorithmi-
cally distinguish “useful” and irrelevant or junk content.

4.1 Performance
We implemented our system using the Azureus/Vuze
DHT [2] 10 and measured the performance of 250 nodes
deployed on the PlanetLab distributed testbed [6] and
participating in Vuze control traffic, but not sharing files
except with our own custom nodes. Vuze is not designed
for bulk content transfer, so we added a TCP-based file
transfer subsystem to a UDP-only Vuze client.
Experimental setup. At the start of our experiments, 20
random nodes each publish a randomly-generated 20MB
file split into 40 512KB blocks and indexed with 5 to 15
randomly-selected keywords. To accommodate network
dynamics, nodes retry publication for 10 seconds or until
the desired replication factor is achieved. We currently
do not implement erasure coding, but rather simulate it
by increasing the replication factor, using 10 logically
adjacent and 15 logically distant file chunk replicas and
15 logically distant manifest replicas. Each node per-
forms hourly maintenance, checking the replication fac-
tor of each locally stored key manifest.
Results. We found our testbed to be highly dynamic,
matching a partially adversarial network: Connectivity
was intermittent and asymmetric,11 between 10% and
15% of nodes failed silently while others disconnected
and reconnected at unpredictable intervals (churn), and
still more responded to connection requests but refused
to store data. Our best-case reliable connectivity was be-
tween 27.5±0.3 nodes of any 50-node subset.

Basic DHT operations — UDP ping and lookup — can
be used as a baseline measurement of unmodified Vuze.
Figure 3(a) shows that even trivial TCP operations, such
as “chunk put” (upload), take 10 to 15 seconds due to
the nature of our testing environment and not our proto-
col. Maintenance time depends on the size of the man-
ifest, and on the number of keywords and chunks per
file. Bandwidth-intensive operations, such as chunk put,
require similar amounts of time as lower-bandwidth ac-
tions, and are always faster than get operations, which

10Any DHT would work; we picked Vuze to ease implementation.
11Node A can reach node B but B cannot reach A.

5

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 50 100 150 200 250 300

CD
F

Time (seconds)

Chunk Put
Chunk Get

Manifest Put
Manifest Get

Manifest Maintenance

(a) Manifest maintenance, put, and get operations.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 20 40 60 80 100 120 140

CD
F

Time (seconds)

(b) Total time to retrieve a file, from search and down-
load to reconstruction and decryption.

Figure 3: Cumulative distribution (CDF) of time required for various operations. Failures omitted — their values are
either unrealistically low or infinitely high, biasing the results.

require more lookups. This suggests that we are bounded
by latency rather than throughput.

Figure 3(b) shows the total time required for a client to
obtain a file, including search, manifest download, con-
tent block fetch, and reconstruction and decryption. The
median user retrieved a 20MB file in 65 to 85 seconds —
reasonable for non-interactive bulk data transfer. Since
we are limited by latency, parallel lookup and download
will improve performance and minimize additional over-
head for larger files. Furthermore, the time needed for
manifest maintenance is comparable to the time needed
to fetch a manifest. We conclude that the performance
of our unoptimized client is acceptable in practice for
publishers, searchers, and storers even in highly unstable
network environments such as our testbed. These perfor-
mance measurements incorporate a significant number of
failed DHT operations (omitted from the graphs). While
ICMP ping failure rate was 2.87%, 7.77% of Vuze UDP
pings failed, 15.12% of Vuze DHT lookups failed, and
11.24% of maintenance operations failed due either to
unsuccessful lookup or download, or inability to upload
all needed replicas. 20% of nodes were responsible for
80% of these failures, but nodes with working network
connections completed their lookups, and there were suf-
ficient guarantors to maintain manifest replication.

5 Related work
Most censorship resistant systems either do not provide
searchable content indexes or do not allow keyword-
based search, and rely on client-side key manage-
ment [28], difficult-to-remember “content hashes” — al-
phanumeric strings at least a dozen characters long [3, 7]
— trusted directories [1], specialized trusted hardware,
or third-party indexes. A number of systems avoid en-
cryption by using secret sharing, splitting files across
multiple servers so no single server holds enough secrets
to reconstruct the file nor learn anything about its con-
tents [10, 25]. None of these approaches can be used for

censorship resistance since out-of-band key management
would complicate search and retrieval, and neither spe-
cialized hardware nor directory servers are secure against
a powerful adversary. Modifying existing systems for
both in-band search and plausible deniability is not triv-
ial, since decryption keys must be simultaneously dis-
coverable by clients but not storers. Neither hashes of
content plaintext nor keywords can serve as decryption
keys since this undermines plausible deniability of the
storer. Any search feature would have to be “one-way,”
so both encryption and metadata separation are required.

6 Conclusion
We described a plausibly-deniable censorship resistant
search and storage system that provides flexible, ro-
bust, and self-contained peer-to-peer storage while re-
sisting strong (state-level) adversaries. It combines “one-
way indexing” for plausible deniability and easy key-
word search, with erasure coding, aggressive replica-
tion, and content-oblivious replica maintenance for ro-
bust and highly available storage. It also mitigates pol-
lution and exhaustion attacks though a combination of
curated content and a self-cleaning mechanism. Very
few honest nodes are needed to successfully maintain file
replication even in the presence of adversaries and high
member churn. Through simulation and implementation
we showed that our design is practical, highly robust in
low-reliability environments, and can support massive
amounts of stored content (260 blocks) with negligible
loss at node failure rates up to 70%.

7 Acknowledgments

The authors would like to thank Eric Myhre, Rob Jansen,
James Tyra, and our anonymous reviewers for their help
with an early version of this work. This work was sup-
ported in part by NSF grant 0917154.

6

References

[1] ADYA, A. ET. AL. Farsite: Federated, available, and reliable
storage for an incompletely trusted environment. In OSDI (2002).

[2] Azureus, now called Vuze : Bittorrent Client, 2011. http://
azureus.sf.net/.

[3] BENNETT, K., GROTHOFF, C., HOROZOV, T., AND LINDGREN,
J. T. An encoding for censorship-resistant sharing. Tech. rep.,
GNUnet, 2003.

[4] BENNETT, K., HOROZOV, C. G. T., AND PATRASCU, I. Effi-
cient sharing of encrypted data. In ACISP (2002).

[5] China ’blocks’ iTunes music store. BBC News. August 22, 2008.
[6] CHUN, B., CULLER, D., ROSCOE, T., BAVIER, A., PETERSON,

L., WAWRZONIAK, M., AND BOWMAN, M. PlanetLab: An
overlay testbed for broad-coverage services. SIGCOMM Comput.
Commun. Rev. 33, 3 (2003).

[7] CLARKE, I., SANDBERG, O., WILEY, B., AND HONG, T. W.
Freenet: A distributed anonymous information storage and re-
trieval system. In PET (2000).

[8] COX, L., AND NOBLE, B. Samsara: Honor among thieves in
peer-to-peer storage. SIGOPS OS Review 37, 5 (2003).

[9] Creative Chinese dodge censors to search for ’Uncle Jiang’. The
Indian Express (2011).

[10] DINGLEDINE, R., FREEDMAN, M. J., AND MOLNAR, D. The
Free Haven project: Distributed anonymous storage service. In
PET (2000).

[11] FIAT, A., AND SAIA, J. Censorship resistant peer-to-peer content
addressable networks. In SODA (2002).

[12] HAEBERLEN, A., MISLOVE, A., AND DRUSCHEL, P. Glacier:
Highly durable, decentralized storage despite massive correlated
failures. In NSDI (2005).

[13] ISDAL, T., PIATEK, M., KRISHNAMURTHY, A., AND ANDER-
SON, T. Privacy-preserving P2P data sharing with OneSwarm.
SIGCOMM Comput. Commun. Rev. 40 (2010).

[14] KÜGLER, D. An analysis of GNUnet and the implications for
anonymous, censorship-resistant networks. In PET (2003).

[15] MITTAL, P., CAESAR, M., AND BORISOV, N. X-Vine: Se-
cure and pseudonymous routing using social networks. In NDSS
(2012).

[16] MOGHADDAM, H. M., LI, B., DERAKHSHANI, M., AND
GOLDBERG, I. SkypeMorph: Protocol obfuscation for Tor
bridges. Tech. Rep. 8, Cheriton School of Computer Science,
University of Waterloo, 2012.

[17] Tor project: obfsproxy. Accessed February 15, 2012.
[18] Pakistan blocks YouTube website. BBC News (2008).
[19] QUINLAN, S., AND DORWARD, S. Venti: A new approach to

archival storage. In FAST (2002).
[20] RABIN, M. O. Efficient dispersal of information for security,

load balancing, and fault tolerance. Journal of the ACM 36, 2
(1989).

[21] RATNASAMY, S., FRANCIS, P., HANDLEY, M., KARP, R., AND
SHENKER, S. A scalable content-addressable network. SIG-
COMM Comput. Commun. Rev. 31, 4 (2001).

[22] RISEUP.NET. Server seizure, April 2012.
[23] SANDBERG, O. Distributed routing in small-world networks. In

ALENEX (2006).
[24] STOICA, I., MORRIS, R., LIBEN-NOWELL, D., KARGER, D.,

KAASHOEK, M. F., DABEK, F., AND BALAKRISHNAN, H.
Chord: A scalable peer-to-peer lookup service for Internet ap-
plications. In SIGCOMM (2001).

[25] STORER, M. W., GREENAN, K. M., MILLER, E. L., AND
VORUGANTI, K. POTSHARDS: Secure long-term storage with-
out encryption. In USENIX Technical (2007).

[26] VASSERMAN, E. Y., JANSEN, R., TYRA, J., HOPPER, N., AND
KIM, Y. Membership-concealing overlay networks. In CCS
(2009).

[27] WALDMAN, M., AND MAZIÈRES, D. Tangler: A censorship-
resistant publishing system based on document entanglements.
In CCS (2001).

[28] WALDMAN, M., RUBIN, A., AND CRANOR, L. Publius: A ro-
bust, tamper-evident, censorship-resistant and source-anonymous
web publishing system. In USENIX Security (2000).

[29] WikiLeaks. http://wikileaks.org/, 2008.
[30] YE, J., AND FOWLER, G. A. Chinese bloggers scale the ’Great

Firewall’ in riot’s aftermath. The Wall Street Journal (2008).
[31] ZITTRAIN, J., AND EDELMAN, B. Internet filtering in China.

IEEE Internet Computing 7, 2 (2003).

7

http://azureus.sf.net/
http://azureus.sf.net/
http://wikileaks.org/

	Introduction
	Requirements
	System Design
	Publishing
	Search and retrieval
	Storage, maintenance, and cleanup

	Evaluation
	Performance

	Related work
	Conclusion
	Acknowledgments

